
Arboriculture & Urban Forestry 37(5): September 2011

©2011 International Society of Arboriculture

191

Anthony N. Mucciardi, Christoper J. Luley, and Kevin H. Gormally

Arboriculture & Urban Forestry 2011. 37(5): 191–199

Preliminary Evidence for Using Statistical Classification of 
Vibration Waveforms as an Initial Decay Detection Tool

Abstract. Arborists commonly use sounding during an initial evaluation of urban trees to determine the presence of advanced decay and hollows. Striking 
the trunk with a mallet produces stress waves that propagate through the wood and, in turn, generate characteristic audible sounds. Successful application 
of this procedure, however, requires subjective evaluation of the sonic variations that result from different wood species and densities, and various ambi-
ent noise conditions. Therefore, a statistical classification approach was developed for automatically identifying decay from stress waves captured using 
an accelerometer probe that is less subjective and more reproducible than an operator-in-the-loop approach. The classification algorithms were designed 
to detect the presence of decay from aberrant characteristics of the vibration waveform and do not rely on sonic velocity changes commonly used in 
most sonic testing for decay. The approach was tested in a preliminary study on 36 segmented trunk samples representing a wide range of typical urban 
tree species and decay types. The classifier successfully identified the decay status of 83% of the samples independent of species and trunk diameter. 
The results of this feasibility study cannot be transferred to real world tree inspection without additional testing on standing trees, but do demonstrate 
the potential of using accelerometers supplemented with a statistical classifier to support an initial assessment of decay in urban trees by an arborist.
 Key Words. Accelerometer; Decay Detection; Feature Extraction; Pattern Classification; Sounding; Stress Waves; Urban Trees; Vibration Waves 
Wood Decay.

Sounding is a practical and widely accepted field technique for 
initially establishing the presence or absence of internal decay 
in trees, including those in urban settings (Boyce 1961; Mat-
theck and Breloer 1994) and wood in service (Zabel and Mor-
rell 1992). An arborist evaluates the soundness of a tree by strik-
ing the trunk with a mallet, hammer, or other solid object and 
analyzing the resulting sounds for abnormal characteristics as-
sociated with decay. The acoustic structure of the sound is de-
termined by the propagation of the vibration waves though the 
volume of sound wood, decayed wood, or any internal voids, 
such as those created by enzymatic degradation by fungi.

The effectiveness of sounding as a preliminary evalua-
tion tool has been discussed (Boyce 1961), but no research 
literature appears to address the subject with statistical rigor. 
However, it is clear that sounding is a learned skill and its ef-
fectiveness is therefore subject to the experience of the evalu-
ator and, in particular, his/her ability to adapt to the vari-
ability introduced when evaluating different tree specimens, 
including the bark thickness, trunk diameter, and amount of decay.

Alternatively, aberrant sonic wave propagation can be auto-
matically detected using a noninvasive sensor system. The authors 
propose a novel accelerometer-based system that is inspired by 
an arborist’s approach to sounding analysis. An accelerometer is 
a precise electro-mechanical analog to the human ear; it is a small 
sensor that measures reverberations of the trunk surface as the 
rate of change of the surface’s movement (velocity) with respect 
to time. The sensor picks up low amplitude vibrations, amplifies 
them, and converts them into a digital signal for further process-
ing. Compared to classical sounding, analytical classification of 
waveforms recorded by an accelerometer can offer arborists a less 

subjective and more reproducible noninvasive method of initially 
detecting decay in urban trees. Data recorded by the accelerometer 
is insensitive to ambient noise, operates at a much higher sensitiv-
ity to frequencies of interest than the human ear, and does not lose 
its frequency discrimination over time like the human operator.

Recent research has introduced numerous instrumented systems 
for nondestructive decay detection that aim to improve the accura-
cy of preliminary tree health evaluations and reduce the chance of 
human errors (Mattheck and Bethge 1993; Bucur 2003; Nicolotti 
2003; Axmon et al. 2004; Gilbert and Smiley 2004; Wang et al. 
2008; Brashawet al. 2009). These systems employ methods that 
range from relatively simple stress wave and ultrasonic single-path 
timing calculators to more advanced tomographic reconstruction 
algorithms based on multipath propagation measurements. These 
noninvasive detection methods can accurately reveal the general 
location and magnitude of defects and fine resolution of the de-
cay can then be achieved using microdrilling (Wang et al. 2008).

Single-path timing methods (Mattheck and Bethge 1993; 
Wang et al. 2004; Kazemi-Najafi et al. 2009) detect decay sim-
ply by comparing a modeled transmission time along a single 
path through transverse sections of the wood to the observed 
time. The benefit of these systems’ simplicity, however, is offset 
by their limited capabilities for decay detection. Stress wave ve-
locity varies substantially across tree samples, even intact trees 
and a standard reference velocity are not readily available for the 
data interpretation (Wang et al. 2005; Wang and Allison 2008).

These concepts have been extended to more extensive, 
complex, and expensive multipath systems based on a ring of 
sensors. Rinn (1999) was the first to publish on multipath to-
mography using chains of electronically independent sources 
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that used speed, pulse height, and other wave properties in 
combination with electrical impedance. Other investigators 
have since reported on ring of sensor-based methods (Nico-
lotti et al. 2003; Gilbert and Smiley 2004; Bucur 2005; Wang 
et al. 2005; Wang et al. 2008). The sonic tomography instru-
ments have shown increased resolution of internal defects 
at the expense of operational simplicity and increased costs.

The Axmon et al. (2004) multipath system represents some-
what of a balance between the simple single-path timing instru-
ments and the more complex tomography systems. Although the 
Axmon et al. instrument required additional equipment (using a 
ring of accelerometer sensors), it also incorporated a relatively 
simple decay detection logic based on frequency and surface 
wave propagation velocity. The system successfully identified 
decay in living stands of Picea abies with an accuracy of ap-
proximately 74%. These promising results were limited to this 
single species, however, and the authors concluded that their 
models would likely have to be recalibrated for each new stand.

This research study was conducted to determine the feasi-
bility of using a relatively simple electro-mechanical instru-
ment for decay detection based on statistical classification of 
a stress-induced sonic waveform recorded from a single ac-
celerometer sensor, as opposed to velocity-based stress wave 
timing. This system extracted statistical features that were simi-
lar to the acoustic cues used to train human operators during 
a sounding evaluation. Like the aforementioned nondestruc-
tive detection instruments, it would be invariant to an opera-
tor’s experience level, so that different operators would obtain 
the same results. Unlike the multipath measurement instru-
ments, however, this system would have the benefit of requir-
ing only a relatively simple and inexpensive set of hardware 
components, as well as generalizing to detect decay across a 
wide variety of urban tree species without repeated calibration.

The theoretical basis for measuring characteristic acoustic 
structures with statistical features and classifying the contents 
of a trunk based on those feature values is built on the basic 
principles of vibration wave propagation and psychoacoustic 
research. When a hammer strikes the trunk, a stress wave is 
generated that propagates through the wood matrix at a veloc-
ity proportional to the square root of Young’s modulus, which 
depends on the physical properties of the wood. The stress wave 
moves through the medium by alternating pulses of pressure 
waves that travel parallel to the trunk surface with a wave pe-
riod (wavelength) determined by the wave’s velocity. Internal 
discontinuities of the medium alter the velocity and amplitude 
of the wave. When it reaches the surface and causes it to vibrate, 
the vibrations generate pressure waves in the surrounding air 
that are perceived as sound when these airborne pressure waves 
strike an eardrum. The perceived pitch of these sounds is depen-
dent upon the trunk reverberations and, thus, by its internal con-
dition. Due to the mass of the trunk, the frequency of the pitch 
falls in the normal audible range (approximately 50 to 4,000 Hz).

Although psychoacoustic research does not specifically dis-
cuss wood decay sounds, it has shown that the human brain can 
distinguish many other complex natural sounds (Howard 1977; 
Howard and Ballas 1980; Ballas 1993; Miller 1994), including 
footfalls (Li et al. 1991), slamming doors (Fowler and Rosen-
blum 1990), clapping hands (Repp 1987), and breaking bottles 
(Warren and Verbrugge 1984). Notably, Freed (1990) found 
that there are acoustic differences between percussive events 

like mallet strikes, and Lufti (2001) found that listeners can de-
velop strategies for distinguishing solid and hollow metal and 
wooden bars. The sounds considered in these studies contained 
sufficient information to allow identification of complex source 
attributes (analogous to decay), and moreover, that listeners are 
capable of performing these identifications with limited variation 
in other source attributes (analogous to diameter and species).

The authors studied various statistical features to determine which 
combination comprised sufficient information to successfully dis-
tinguish sounds from decayed versus non-decayed tree samples. As 
in traditional engineering literature, features that described various 
aspects of the waveform’s acoustic structure were explored (Stearns 
1976; Shin and Kil 1996; Vapnik 1998; Wellman and Srour 1999).

To demonstrate the feasibility of using an acoustic waveform 
classification system to detect decay across a range of urban tree spe-
cies, the study authors assembled a test bed consisting of a variety 
of recently cut tree sections across a wide range of commonly found 
urban tree species, trunk diameter, and internal conditions (solid, 
advanced decay, and hollow). A simple accelerometer-based data 
collection system and applied signal processing, waveform feature 
extraction, and pattern classification algorithms were configured 
to the test bed samples to estimate the classifier’s performance.

MATERIALS AND METHODS

Sample Selection
Twenty felled urban trees were collected in Maryland, U.S. The 
trunks were further divided with a chain saw if visual assessment 
indicated that different levels of decay were present. Although 
limited vibration differences may result from using felled trunk 
segments instead of standing trees, the authors had to rely on 
these segments as the only available test data, as have similar 
studies (Nicolotti et al. 2003; Wang et al. 2005). The final data set 
consisted of 36 sections of 12 different tree species, a much wider 
range of species than similar studies (Axmon et al. 2004; Gilbert 
and Smiley 2004; Nicolotti et al. 2003; Wang et al. 2005; Wang 
and Allison 2008; Kazemi-Najafi et al. 2009), as shown in Table 1. 
Tree species included in the sample were tulip poplar (Lirioden-
dron tulipifera), red maple (Acer rubrum), American elm (Ulmus 
americana), paulownia (Paulownia tomentosa), sycamore (Plata-
nus occidentalis), ash (Fraxinus spp.), white oak (Quercus alba), 
American beech (Fagus grandifolia), white pine (Pinus strobus), 
white cedar (Thuja occidentalis), red oak (Quercus rubra), and 
black locust (Robinia pseudoacacia). We did not measure the den-
sity of our samples, but the species represented a wide range of 
wood densities (United States Department of Agriculture 2007).

The samples had the majority of their bark still intact and 
ranged in length from 58.4 cm to 221 cm and diameter from 
32.5 cm to 99.1 cm. The condition of each section was visu-
ally assessed and labeled as either “decayed” (having visible 
decay or hollows) or “non-decayed” (solid) (Luley 2006). The 
test bed and example cross-sections are shown in Figure 1.

Measurement Equipment
The data collection system was composed of an accelerom-
eter (PCB Piezotronics, Inc., Shear Accelerometer, Model 
353B33) with a frequency range of 1 to 4,000 Hz, a load cell 
hammer (PCB Piezotronics, Inc., Load Cell Hammer, Model 
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086D20), and a data acquisition module (Oros, Inc., 8-Chan-
nel Vibration Data Acquisition/Analyzer, Model OR35).

Nails were used to couple the vibration stress wave prop-
agating through the trunk to the accelerometer; a 25.4 mm 
metal disk was tack welded onto wide-head nails so that each 
nail could be gently tapped through the bark to barely make 
contact with the underlying wood. The accelerometer was 
attached to the nail head using beeswax, a quick and well-
bonded attachment procedure. The equipment is shown in Fig-
ure 2a, and an example hammer strike is shown in Figure 2b. 

Measurement Procedure
Each trunk sample was fitted with an accelerometer at the mid-
point of the trunk’s long axis, and the load cell and accelerometer 
were connected to the data acquisition module. The hammer was 
used to induce a stress wave at the same elevation as the acceler-
ometer (along the trunk’s long axis) but offset 45 degrees around 
the trunk’s circumference (Figure 2a). When the operator struck 
the trunk with the hammer, the data acquisition hardware triggered 
an electronic recording of both the hammer strike’s force over 

Figure 1a. Experimental test bed. Twenty recently felled tree spec-
imens.

Figure 1b. Examples of specimens showing non-decayed (top) 
and hollow (bottom).

Table 1.  Sample identification and decay status for accel-
erometer testing.

Sample IDz Tree Species Decay Status Diameter (cm)

01Ay Tulip poplar Decayed 80.5
01By Tulip poplar Decayed 84.6
02A Red maple Decayed 52.3
02B Red maple Non-decayed 43.2
02C Red maple Non-decayed 36.8
02D Red maple Non-decayed 34.3
03Ay American elm Non-decayed 73.9
04A Paulownia Decayed 40.4
04By Paulownia Non-decayed 41.1
04Cy Paulownia Non-decayed 46.5
05A Sycamore Non-decayed 66.0
05By Sycamore Non-decayed 78.2
06Ay Ash Decayed 32.5
06B Ash Decayed 34.0
07A Tulip poplar Decayed 61.5
07By Tulip poplar Decayed 58.7
08A Red maple Decayed 40.4
08B Red maple Decayed 35.8
09A Tulip poplar Decayed 54.6
10Ay White oak Decayed 75.7
10B White oak Decayed 56.1
10C White oak Non-decayed 52.1
10Dy White oak Non-decayed 51.1
11A Beech Decayed 56.1
12A Sycamore Decayed 38.4
13Ay White pine Decayed 37.1
14Ay Cedar Decayed 37.6
15A Tulip poplar Decayed 99.1
16Ay Red oak Decayed 98.3
17A Red oak Non-decayed 76.5
17B Red oak Decayed 62.0
18A Black locust Decayed 38.1
19Ay Red oak Non-decayed 68.6
19By Red oak Non-decayed 66.6
20Ay Tulip poplar Non-decayed 49.0
20By Tulip poplar Non-decayed 50.5
z Sample IDs with the same numerical prefix were taken from the same sample.  
y Indicates the samples that composed the training set: nine non-decayed and 
eight decayed segments.

Figure 2a. Data collection setup. Instrumented tree sample, load 
cell hammer, accelerometer, and wide head nail.
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time (i.e., the amount of energy induced by the hammer strike) 
and the response sensed by the accelerometer over time.

The load cell “force/response” recording was used to normalize 
the responses of the accelerometer channel to equalize input power 
across all tree samples as well as provide a quality assurance check 
on the hammer strike. A fairly gentle hammer strike was all that 
was required; if the strike was not hard enough, the data acquisition 
instrument issued an immediate alert to perform another strike. 
Four example waveform recordings are presented in Figure 3.

DATA PROCESSING AND ANALYSIS
The load cell hammer and accelerometer data were loaded into 
the Matlab (Ver. 7.3.0, R2006b, Natick, MA, U.S.) process-
ing environment. The accelerometer signal was normalized 
by the strength of the hammer strike and rectified, and statis-
tics were calculated that characterized the acoustic structure. 
A rules-based multivariate pattern classifier was developed 
that referenced these statistical features to automatically la-
bel each sample either decayed or non-decayed. These clas-
sifier labels were then compared against the actual conditions, 
assigned by the arborist, to assess the classifier’s performance. 
The data processing analysis procedure is shown in Figure 4.

Training and Testing Data Samples
The classifier was developed using a set of calibration data (the 
training set of nine non-decayed and eight decayed specimens, as 
indicated in Table 1) such that the algorithm was provided with 
the correct answer for each waveform. The logic for classify-
ing decay status was defined based on the waveform parameters 
of these calibration data to give the closest match between the 
predictions and the actual conditions. The full data set of all 36 
samples shown in Table 1 was then used to check the classifier’s 
ability to accurately and robustly predict the data conditions.

Waveform Feature Extraction
Twelve features were evaluated to distinguish the acoustic struc-
ture of the non-decayed and decayed samples, including the 
cumulative power of the conducted stress wave signal and 11 

higher order statistics (Wellman 
and Srour 1999). Three features 
were found that best exploited 
waveform differences between 
the two decision categories.

1. Cumulative Power (aPower 
in Equation 1), computed as the 
cumulative sum of normalized 
data samples starting at initiation 
of the hammer strike, represents 
the amount of energy transmitted 
through the trunk. Large values 
tend to be associated with an in-
ternal decay that results in rever-
berations, which can lead to larger 
amplitudes of the recorded signal 
(larger total power) compared to a 
solid section that generally shows 
less total transmitted power.

2. Pulse Duration (PulseDur), 
computed as the amount of time 
the signal spends above a thresh-
old (the half power points on 
either side of the signal peak), 
represents resistance of the 
trunk to stress wave transmis-
sion. Large values are associated 
with the presence of an internal 
hollow due to the longer-lasting 
reverberatory sequence creat-

Figure 2b. Hammer strike.

Figure 3.  Example waveform amplitude versus time plots for solid (top row) samples 10D and 20A, 
and hollow (bottom row) samples 1A and 16A, from which the three statistical waveform features 
were determined.
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ed by the hollow area, compared to a straight-through, shorter 
duration, time of transmission through a solid crosssection.

3. Amplitude Kurtosis (kurt
amp

 in Equation 2), computed as 
a higher-order statistical descriptor of the waveform signal’s 
amplitude shape and specifically the sharpness of the signal’s 
peak, represents the extent of homogeneity of the internal trunk 
matrix. A signal with high kurtosis has a sharper peak and lon-
ger, fatter tails, while a low kurtosis signal has a more round-
ed peak and shorter, thinner tails. Larger values are associated 
with greater homogeneity and sound internal conditions because 
the vibration energy is transmitted quicker along a direct path 
to the receiver, whereas smaller values are associated with de-
cayed samples because the energy is unfocused during propaga-
tion through the trunk. This is easily observed in Figure 3, where 
the majority of the energy in the sound samples is clustered near 
the impulse start as opposed to the significant long-duration 
low-frequency reverberation present in the decayed samples:

where h(i) = amplitude signal of the hammer cell recording for 
each time sample (N total samples); a(i) = amplitude signal 
of the accelerometer for each time sample (N total samples).

The distributions of the values from these three features across 
all of the training data set samples are shown in Figure 5. The plot 
shows that each feature captures a distinguishing characteristic 
of one data class with potential to separate it from other classes.

Classification Methodology
The classifier was configured to segment the statistical feature 
space based on the training data set, as shown in Figure 6. The 
study authors created classifier rules to maximize the separa-
tion between the decayed and non-decayed training samples. 
A sample was classified “non-decayed” if its three feature 
values satisfied one or both of the following requirements:

Classifier Rule 1 = (kurt
amp

 > 1199) AND (kurt
amp

 < 2600)

Classifier Rule 2 = (aPower > 1.13 AND aPower < 27) AND (PulseDur < 3.14e-4)

Otherwise, the sample was classified “de-
cayed.” These rules were applied to the full data set.

RESULTS AND DISCUSSION
Overall, the rules-based classifier correctly classified 30 of 36 
(83%) of the samples. Of the 15 non-decayed (sound) samples, 14 
of 15 (93%) were correctly classified as non-decayed. Of the 21 
decayed samples (includes advanced decay and hollows), 16 of 21 
(76%) were correctly identified as containing decay, meaning that 
five were incorrectly predicted to contain solid internal conditions.

The χ2 statistics showed the classification results could not 
have happened by chance based on a 0.01 alpha level of signifi-
cance (χ2 = 18.7 with 1 degree of freedom) and that there was 
no significant difference between the expected classification 
and actual classifications for decayed and non-decayed samples 
(χ2 = 0.65 with 1 degree of freedom). Plots of classifier result 
by trunk size and species (Figure 7) showed no apparent rela-
tionship between these parameters and classifier accuracy. This 
was true for the 30 correctly and six incorrectly (8B, 9A, 10B, 
10C, 11A, 12A) classified samples. It is believed that the few 
incorrect classifications were due to the relatively small num-
ber of training samples and not the underlying approach given 
the lack of a pattern to the misses; the robustness of the ap-
proach will be validated in future tests with additional samples.

The 83% overall success rate was slightly better than the 74% 
correct identification result reported for the Axmon et al. (2004) 
system. These comparable results were achieved with a statistical 
classifier approach across numerous urban tree species and did 
not require recalibration for each new species, demonstrating the 
system’s robustness and appropriateness for an urban application. 
Furthermore, the system relied on a simpler and more cost-effective 
assemblage of hardware. Axmon et al. (2004) measured percussive 
propagation velocity using multiple accelerometers, whereas the 
method presented here simply relied on aberrant characteristics 
of vibration waveforms measured using a single accelerometer.

Figure 4. Data processing block diagram.
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Figure 5.  Box and whisker plots of the distributions of feature 
values for the sound, advanced decay, and hollow training data 
samples. The top row of plots shows Cumulative Sum Squared 
distributions, the middle row shows Pulse Duration, and the bot-
tom row shows Amplitude Kurtosis.  The horizontal mark in each 
box is the sample’s median value and the edges of the box are the 
25th and 75th percentiles.  Values for solid samples 10D and 20A 
and hollow samples 1A and 16A are given for reference.  Note: 
Advanced decay and hollow are both classified as “decayed” but 
are presented here individually.

The work reported here was restricted to relatively short sec-
tions of recently cut tree trunks. The vibrational behavior of a 
trunk changes when a part is removed from the complete stem 
because removal reduces the compressional load. However, the  
authors believe the propagation effects induced by this unloading 
do not significantly impact results. The signal analyzed represents 
the initial arrival of the exciting pulse traveling a very short dis-
tance from the hammer to the accelerometer through the wood. 
Consequently, the difference between the boundary conditions 
for the sections and those for standing trees should have little 
effect on the statistical feature classifier. Future work using stand-
ing trees will be needed to verify the classifier’s effectiveness.

The automated classifier likely successfully identified decay 
in the sample data because the features represented a statisti-
cally sufficient description of the waveform acoustic structure. 
The finding that several features were needed in combination to 

Figure 6. Scatter plots of the feature values for the sound, ad-
vanced decay, and hollow training data samples with the clas-
sifier regions demarcated by the shaded boxes. The classifier 
optimally segments the feature space and separates the decayed 
(advanced decay and hollow) and non-decayed training samples.
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separate the “decayed” and “non-decayed” classes was consis-
tent with Lufti (2001), who showed that several acoustic param-
eters were necessary to aurally classify a hollow bar in labora-
tory conditions. The acoustic structures described by the three 
statistical features were also related to the acoustics used by ar-
borists to classify the trunk segments with sounding: the char-
acteristic “thud” sound of hollow trees is shown in Figure 3 as 
long-duration low-frequency reverberation (slow wave modula-
tion in the sonic waveform) that is also reflected in the cumu-
lative power, pulse duration, and amplitude kurtosis features.

CONCLUSIONS
The results of this feasibility study showed that classification 
based on several vibration waveform statistics was able to detect 
decay in trunk segments of a wide range of urban tree species. The 
authors believe this research establishes the feasibility of using an 
electro-mechanical instrument to replicate the trained human ear. 
This accelerometer system is a fundamentally different and novel 
concept in the context of existing velocity-based instrumented 
systems. Compared to a human operator, the advantages of the 
instrument are that it operates at a much higher sensitivity to fre-
quencies of interest, does not lose its frequency discrimination 
over time, and is insensitive to ambient noise. If its application 
is as successful for standing mature trees as with the tested trunk 
segments, it has the potential for being used by arborists to iden-
tify trees that should be subjected to more detailed inspection.

This work provides only preliminary evidence that the meth-
od and protocol described herein may have value as an initial 
decay detection tool. The authors recognize there is a big step 
from this feasibility test to real world application involving 
standing trees, including various influences of trunk geom-
etry, moisture, temperature, and material properties. Future 
work will focus on testing additional trunk samples, establish-
ing the distance at which decay can be detected from the lo-
cation of the hammer strike, and determining the effects of 
standing trees versus felled segments. Furthermore, the authors 
plan to construct an electro-mechanical complete system pro-
totype for classifying samples in real-time on standing trees.
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Résumé. Les arboriculteurs utilisent régulièrement le sondage sonore 
au cours d’une évaluation initiale d’arbres urbains pour déterminer la 
présence de zones de carie avancées et de cavités. Frapper le tronc avec 
un maillet produit des ondes sonores qui se propagent au travers du bois 
et en retour génèrent des sons caractéristiques et audibles. L’application 
correcte de cette procédure requiert malgré tout une évaluation subjec-
tive des variations sonores qui se produisent selon les différents types 
d’espèce de bois, leur densité et les conditions ambiantes de bruits. En 
conséquence, une approche de classification statistique a été dévelop-
pée pour automatiquement identifier une zone de carie à partir d’ondes 
sonores capturées au moyen d’une sonde d’accéléromètre qui est moins 
subjective et plus reproductive que l’approche humaine. Les algorithmes 
de classification ont été mis au point pour détecter la présence de ca-
rie par rapport aux caractéristiques aberrantes de vibration des formes 
d’ondes et ne dépendent pas des changements de vélocité des ondes so-
nores communément utilisés avec la plupart des test soniques de détec-
tion de la carie. Cette approche a été testée dans le cadre d’une étude 
préliminaire avec 36 échantillons de segments de tronc représentant une 
grande variété d’espèces urbaines typiques et de différentes caries. Le 
système de classification a permis d’identifier avec succès la présence de 
carie dans 83% des échantillons, et ce indépendamment de la l’espèce et 
du diamètre du tronc. Les résultats de cette étude de faisabilité ne peu-
vent être transférés directement dans le cadre réel d’inspections d’arbres 
sans l’apport de tests additionnels sur des arbres debout, mais ils démon-
trent l’utilisation potentielle des accéléromètres couplés à un système de 
classification statistique comme support de l’évaluation initiale de la ca-
rie chez les arbres urbains par un arboriculteur.

Zusammenfassung. Arboristen verwenden gewöhnlich ein Schall-
system während der ersten Bewertung von Strassenbäumen, um even-
tuelle Fäulen und Hohlräume aufzuzeigen. Das Beklopfen des Stammes 
mit einem Hammer produziert Wellen, die durch das Holz dringen und 
charakteristische, hörbare Geräusche verursachen. Eine erfolgreiche An-
wendung erfordert allerdings eine subjektive Bewertung der Geräusch-
varianzen, die aus unterschiedlichen Holzarten und Holzdichten resultie-
ren, sowie verschiedene Umgebungsgeräusche. Daher wurde ein Versuch 
zur statistischen Klassifizierung entwickelt, um automatisch aus den mit 
einer Beschleunigungsprobe erzieltenStresswellen Faulstellen zu iden-
tifizieren, da diese weniger anfällig und besser reproduzierbar sind als 
andere Versuche. Die Algorithmen der Klassifikation   

sind ausgerichtet auf das Aufspüren von Fäule anhand von abweichen-
den Eigenschaften der Vibrationswellen und sind nicht abhängig von 
Veränderungen der Schallgeschwindigkeit, wie sie in den meisten an-
deren Schallsystemen verwendet werden. Der Versuchsaufbau wurde in 
einem Testlauf an 36 Stämmen, die eine große Auswahl an typischen 
urbanen Baumarten representieren und an deren Fäuletypen getestet. Der 
Klassifizierer identifizierte erfolgreich den Fäulestatus von 83 % der Pro-
ben, unabhängig von Art oder Stammdurchmesser. Die Ergebnisse dieser 
Machbarkeits-Studie sind ohne weitere Testreihen an stehenden Bäumen 
nicht übertragbar auf richtige Baumkontrollen, aber sie demonstrieren 
das Potential für den Einsatz von Beschleunigungsmessern, die mit ei-
nem statistischen Klassifizierer ausgestattet sind, um die erste Untersuc-
hung von Fäulnis in Bäumen durch Arboristen zu unterstützen.

Resumen. Los arboristas comúnmente usan el sonido durante una 
evaluación inicial de los árboles urbanos para determinar la presencia 
de descomposición avanzada y cavidades. Golpeando el tronco con un 
martillo se producen ondas de tensión que se propagan a través de la 
madera y, a cambio, generan sonidos audibles característicos. La apli-
cación exitosa de este procedimiento, sin embargo, requiere la evalu-
ación subjetiva de las variaciones sónicas que resultan de las diferentes 
especies maderables y sus densidades, y diferentes ambientes de ruido. 
De allí que se desarrolló una aproximación de clasificación estadística 
para identificar automáticamente la descomposición de ondas de tensión 
capturadas usando una probeta con acelerómetro, que es menos subje-
tiva y más reproducible que un operador. Los algoritmos de clasificación 
fueron diseñados para detectar la presencia de descomposición de carac-
terísticas de variación de forma de onda y hacer los cambios de velocidad 
de sonido comúnmente usado en la mayoría de las pruebas sónicas. La 
aproximación fue probada en un estudio preliminar de 36 muestras del 
tronco segmentadas representando un rango amplio de especies típicas 
urbanas y tipos de descomposición. El clasificador identificó exitosa-
mente el estado de la descomposición de 83% de las muestras, indepen-
dientemente de la especie de árbol y diámetro del tronco. Los resultados 
de este estudio no pueden transferirse al mundo real de la inspección de 
los árboles sin pruebas adicionales en árboles en pie, pero demuestran el 
potencial del uso de acelerómetros, suplementados con un clasificador 
estadístico para apoyar una evaluación inicial de la descomposición en 
árboles urbanos por un arborista.


